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Frottements et balistique

3.1 Forces de frottement

Comme les frottements sont omniprésents dans les phénomenes physiques, ils ont été
considérés jusqu'au XVII¢ siecle comme des propriétés fondamentales et non comme des
interactions. Aristote considérait que le mouvement d’un objet soumis au frottement de air
était son mouvement naturel. Galilée a réalisé que le mouvement naturel d’un corps est un
mouvement rectiligne uniforme en absence de force de frottement. Cela a remis en cause le
paradigme aristotélicien qui a été remplacé par le paradigme newtonien.

Les frottements, aussi appelé friction, sont dus a une interaction entre deux systemes
qui s’oppose a leur mouvement relatif. Les frottements sont caractérisés par des forces
phénoménologiques, c’est-a-dire qu’elles sont tirées de l’expérience. La branche de la
mécanique qui étudie les frottements est la tribologie. Les frottements sont le résultat
de différents types d’interactions qui ont lieu principalement & 1’échelle microscopique. Il
existe des frottements de deux types différents : des frottements secs qui ont lieu & I'in-
terface entre des solides ou des frottements visqueux d’un solide immergé dans un fluide
— c’est-a~dire un liquide ou un gaz.

3.1.1 Frottements secs

A la fin du XVIII€ siecle, Charles Augustin de Coulomb a étudié 'action d’une surface sur
un solide. Il a montré qu’il fallait distinguer deux types de frottements secs. Les frottements
qui empéchent le glissement de la surface de contact d’un solide par rapport a un autre
ont été appelés frottements statiques. Les frottements qui s’opposent au glissement de
la surface de contact d’un solide par rapport & un autre et ralentissent ce mouvement ont
été appelés frottements cinétiques. Au début du XVI¢ siecle, Léonard de Vinci étudie

Fi1GURE 3.1 Une plaque de bois glisse sur une surface lisse et seche. Des poids sont posés
sur la plaque de bois. On mesure la force appliquée sans glissement, puis la force appliquée
lors du glissement.

les frottements secs et en conclut que la force de frottement est proportionnelle a la force
exercée par la surface du dessous sur la surface du dessus et qu’elle est indépendante de
Paire de la surface de contact. Deux siecles plus tard, Guillaume Amontons montre qu’elle
est indépendante de la norme de la vitesse de mouvement relatif d’un solide par rapport a
lautre.

Charles Augustin de
Coulomb

Léonard de Vinci


https://en.wikipedia.org/wiki/Charles-Augustin_de_Coulomb
https://www.youtube.com/watch?v=4kY-v6mq8lA
https://fr.wikipedia.org/wiki/Leonardo_da_Vinci
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Frottements statiques
On considére un solide immobile posé sur une surface (Fig. 3.1). I subit une force de
réaction normale IN qui compense son poids P. On exerce une force de traction T' tangente
a la surface sans que le solide glisse. Le solide subit alors une force de frottement statique
F; pour compenser la force de traction T'. Elle s’ajuste pour qu’il n’y ait pas de glissement
(Fig. 3.2). Lorsque la force de frottement statique F'y atteint une valeur maximale, il y a
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FIGURE 3.2 La force de frottement statique Fy s’ajuste pour compenser la force de traction
T.

décrochement et glissement. L’expression de la norme || Fy|| de la force de frottement statique
est donnée par une inéquation établie par de Coulomb,

[Ff |l < ps |V (3.1)

ou ||IN|| est la norme de la réaction normale IN exercée par la surface sur le solide et ps est
un nombre positif sans dimension physique appelé le coefficient de frottement statique.
La valeur de ce coefficient dépend notamment des matériaux en contact, de leur état de

surface et de 'humidité.

Frottements cinétiques
Lorsque le solide se met en mouvement il subit alors une force de frottement cinétique FY
qui s’oppose & la force de traction T (Fig. 3.3). L’expression de la norme || Fy| de la force
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FIGURE 3.3 La force de frottement cinétique Fy s’oppose au mouvement di a la force de
traction T'.

de frottement cinétique est donnée par une équation établie par de Coulomb,
Fy = —pc||NJ|o (3.2)

ou © = v/||v|| est le vecteur unitaire sans dimension physique qui est colinéaire au vecteur
vitesse et u. est un nombre positif sans dimension physique appelé le coefficient de frot-
tement cinétique. Dans ce modele, on considere que le coefficient p. est indépendant de
la vitesse.

On constate expérimentalement que le coefficient de frottement cinétique entre deux so-
lides est plus petit que le coefficient de frottement statique, c’est-a-dire p. < ps (Tab. 3.1).
On en fait l'expérience lorsqu’on fait glisser un meuble lourd sur un sol lisse. Avant le
décrochement, en régime statique, la norme de la force de frottement || F'f|| est une fonction
linéaire croissante de la norme de la force de traction ||T'||. Lorsqu’elle atteint la valeur
maximale p,||IN||, il y a décrochement. Puis la norme de la force de frottement |F ||
chute brutalement en régime cinétique pour atteindre la valeur constante u. ||IN|| qui est
indépendante de la norme de la force de traction |T'|| (Fig. 3.4).

3.1.2 Frottements visqueux

Une force de frottement visqueux s’exerce sur un objet qui se déplace dans un fluide. Elle
dépend de la vitesse relative v de 1’objet par rapport au fluide. I1 convient de distinguer


https://www.youtube.com/watch?v=eucVByJ23zU&feature=youtu.be&list=PLZ_AWBOS3UDzuhJyYKTu7YlxIoSob5Y4D
https://www.youtube.com/watch?v=F0AV1qyc9Ow&feature=youtu.be&list=PLZ_AWBOS3UDzuhJyYKTu7YlxIoSob5Y4D
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=T

FIGURE 3.4 Comportement de la norme de la force de frottement ||F'f|| en fonction de la
norme de la force de traction || T'|| en régime statique puis cinétique.

TABLE 3.1 Coefficients de frottement sec

Matériaux Statique ps Cinétique .
Caoutchouc/Asphalte 1.0 0.8
Acier/Acier 0.74 0.57
Aluminium/Acier 0.61 0.47
Cuivre/Acier 0.53 0.36
Glace/Glace 0.1 0.03
Téflon/Téflon 0.04 0.03
Articulation humaine 0.01 0.003

deux types de régimes. Le premier est le régime d’écoulement laminaire qui correspond
a une vitesse relative suffisamment basse. Le second est le régime d’écoulement turbulent
qui correspond a une vitesse relative suffisamment élevée, mais inférieure a la vitesse du son.

Loi de Stokes
En régime d’écoulement laminaire, la force de frottement est proportionnelle a la vitesse
relative v et satisfait la loi de Stokes,

Ff=—knv=—-bv (3.3)

ou k est un facteur géométrique et n est la viscosité du fluide. Dans le cas d’une spheére,
le facteur géométrique k = 6w R ou R est le rayon de la sphére. La viscosité n qui dépend
notamment de la température représente une résistance a 1’écoulement (Tab. 3.2). L’unité
de la viscosité dans le systeéme international d'unités est noté [Nsm~2].

Trainée
En régime d’écoulement turbulent, la force de frottement est la trainée qui est propor-

tionnelle au carré de la norme de la vitesse relative v2,

1
Ffz—icmApUQ’i} (3.4)

ou C, est le coefficient de trainée qui n’a pas de dimension physique, A est aire de la
projection de l'objet sur le plan orthogonal au vecteur vitesse et p est la densité du fluide

TABLE 3.2 Viscosité a 25°C

Substances Viscosité 7 [Nsm™?]
Air 0.00002
Eau 0.0009
Sang 0.004
Huile 0.2
Miel 10
Ketchup 100
Verre 1000

Ecoulement laminaire


https://fr.wikipedia.org/wiki/George_Gabriel_Stokes
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— c’est-a-dire le rapport de sa masse et de son volume. Le coefficient de trainée est un
coefficient qui est entierement déterminé par la géométrie de 1'objet (Fig. 3.5).

Cx=1.1 Cx=0.34 n
Cx= 14 @ Cx= 005 -

Cx=0.45 3 Cx= 0102@

FIGURE 3.5 Le coefficient de trainée est déterminé par la forme géométrique de 1'objet.

L’histoire de ’automobile illustre ’évolution du coefficient de trainée C,. Au début du
XX¢ siecle, les voitures avaient un coefficient de trainée C, = 0.7 — 1.0. Aujourd’hui, les
voitures les plus aérodynamiques ont un coefficient de trainée C,, = 0.2 — 0.3 (Fig. 3.6). Le
coefficient de trainée a donc pu étre réduit d’un facteur trois en un siecle grace au progres
de l'aérodynamique — la branche de la mécanique qui étudie I’écoulement de I’air.
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FIGURE 3.6 Evolution du coefficient de trainée C, des voitures du XX°® au XXI® siecle.

3.2 Balistique sans frottement

Apres avoir posé les bases de la mécanique newtonienne et introduit différents modeles
pour les frottements, on va a présent examiner une application pratique de ces lois : la
balistique. La balistique est ’étude des trajectoires d’objets, qui peuvent étre assimilés a
des points matériels, lorsqu’ils sont soumis a I'attraction terrestre a la surface de la terre.
La balistique cherche donc a déterminer I’équation horaire d’un point matériel soumis a la
force de pesanteur due a son propre poids. Lorsqu’on parle de balistique, on pense tout de
suite au lancer d’'une balle ou a la trajectoire d’un obus.

Si une craie est lancée avec une vitesse initiale quelconque dans un plan vertical, sa tra-
jectoire est parabolique alors que si elle est lancée verticalement sa trajectoire est rectiligne.
Pour comprendre ceci, on doit établir les équations horaires de la balistique. Dans un premier
temps, on considére les cas simples ou le frottement peut étre négligé.
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3.2.1 Démarche de résolution

Lorsqu’on désire résoudre un probleme de dynamique, il est utile d’utiliser une démarche
systématique. En utilisant une telle approche, on structure l’esprit et on adopte une
méthodologie connue en terrain inconnu. Cette approche systématique est donc en quelque
sorte une approche tout-terrain. Cette approche n’est pas toujours nécessairement la
meilleure, mais elle est tres certainement la plus polyvalente. Dans le cas particulier de
la balistique sans frottement, la marche a suivre est la suivante :

e On choisit un référentiel et un repere adapté — ou un systeme de coordonnées. Dans
le cas du mouvement balistique, il n’a pas de symétrie particuliere. On choisit donc un
repere cartésien.

e On identifie les forces extérieures agissant sur le point matériel. Dans le cas d’un
mouvement balistique sans frottement, la seule force agissant sur le point matériel est
la force de pesanteur due a 'attraction gravitationnelle.

e On définit les conditions initiales sur la position et la vitesse du mouvement balistique
spécifique qu’on désire décrire.

e On énonce la loi vectorielle du mouvement — c’est-a-dire la 2° loi de Newton — dans
le cas du mouvement balistique.

e On projete la loi vectorielle du mouvement sur les axes de coordonnées. On obtient trois
équations du mouvement. Ces équations sont des équations différentielles exprimées
en termes des dérivées des composantes de la position par rapport au temps.

e Pour obtenir les équations horaires du point matériel, on integre les équations du
mouvement par rapport au temps. En combinant les équations horaires, on obtient
I’équation de la trajectoire de I'objet.

3.2.2 Poids

Pour faire de la balistique, il faut commencer par définir la force de pesanteur exercée sur
un objet a la surface de la terre par I'attraction gravitationnelle. La force de pesanteur d’un
objet, c’est simplement son poids. Un objet en chute libre subit une accélération dirigée vers
le bas qui due a la force de pesanteur. Il existe donc un champ vectoriel de gravitation
qu’on dénote g. On utilise le terme champ, parce que la force de pesanteur agit partout,
c’est-a-dire en tout point. Ce champ varie lorsqu’on s’éloigne ou se rapproche du centre de
la terre. Il varie aussi avec la latitude a cause des effets liés a la rotation de la terre et
a cause du fait que la terre n’est pas une spheére parfaite, mais a une forme d’ellipsoide.
Seulement, a 1’échelle de distances qu’on considere lorsqu’on lance une balle ou qu’on tire
un obus, ces effets sont négligeables et on peut considérer que le champ de pesanteur est a
peu pres constant et dirigé vers le centre de la terre.

La force de pesanteur ou le poids d’'un objet est défini comme le produit de la masse
m de lobjet et du champ gravitational g en accord avec la 2°¢ loi de Newton (2.32),

P=mg (3.5)

Le poids P est considéré comme une force extérieure F ' puisque la cause de cette force est
le champ de pesanteur qui est extérieur a ’objet. Pour trouver des solutions quantitatives
aux problemes de balistique, il faut pouvoir disposer d’une valeur numérique de ce champ
de pesanteur. La valeur expérimentale de la norme du champ gravitationnel g évaluée a une
latitude de 45° & Paltitude A = 0 m du niveau de la mer est g = 9.81 ms~2.

3.2.3 Loi du mouvement balistique

Apres avoir établit I’expression (2.32) de la 2° loi de Newton et obtenu 'expression (3.5)
de la force de pesanteur, on est & présent en mesure d’établir la loi dynamique du mouvement
balistique. La seule force extérieure F “** est le poids de ’'objet P. Par conséquent, la loi du

Poids
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mouvement balistique (2.32) s’écrit,
F™=P=ma (3.6)

En substituant I'expression (3.5) du poids dans I’équation du mouvement et en la divisant
par la masse m de l'objet, on obtient,

a=g (3.7)

Ainsi, l'accélération de 'objet est constante et indépendante de sa masse m. Si on laisse
tomber en chute libre une goutte d’eau et une bille d’acier de méme volume, leur accélération
est la méme. Evidemment ces deux objets ont une masse différente, mais leur accélération est
la méme. On observe cela en absence de frottement ou si les frottements sont négligeables.
Galilée a prédit et Torricelli a observé que dans le vide une plume et un cube de plomb ont
la méme accélération (Fig. 3.7).

-«

FIGURE 3.7 Dans le vide, en absence de frottement, la plume et le cube de plomb ont la
méme accélération.

3.2.4 Repere et conditions initiales

Etant donné que le mouvement balistique en absence de frottement n’a pas de symétrie
particuliere, on choisit comme repére, le repere cartésien (&, 9, 2). La loi du mouvement ba-
listique (3.7) décrit toutes sortes de mouvements possibles. Pour déterminer un mouvement
balistique spécifique, on doit spécifier les coordonnées cartésiennes de la position et de la
vitesse a un instant donné. Pour simplifier, on donne, en général, la position et la vitesse a
Iinstant initial ¢ = 0. Pour cette raison, on parle de conditions initiales.

N
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FIGURE 3.8 Le point matériel P a une position initiale 79 et une vitesse initiale vy quel-
conques.

Le vecteur position initiale 7 (0) = 7 s’écrit en composantes cartésiennes comme x (0) &+
y(0)g+2(0)2=z0&+ yoJ + 20 2. Par conséquent, il y a trois conditions initiales sur la


https://www.youtube.com/watch?v=EevMOYosNsU
https://www.youtube.com/watch?v=fz7ulPC7Kwo
https://fr.wikipedia.org/wiki/Evangelista_Torricelli
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position (Fig. 3.8),

(1) x(0) =m0 (i) y(0) =wo (#4i) 2 (0) = 20 (3.8)

Le vecteur vitesse initiale v (0) = vo s’écrit en composantes cartésiennes comme % (0) & +
7(0)g + 2(0) 2 = voz & + voy Y + vo- 2. Par conséquent, il y a trois conditions initiales sur
la vitesse (Fig. 3.8),

(1) &(0) = vou (i) 9(0) = voy (#ii)  2(0) = vo- (3.9)

3.2.5 Equations du mouvement balistique

Le vecteur accélération s’écrit en coordonnées cartésiennes comme a = £ & + 44 + 2 2.
Le champ de gravitation g est dirigé vers le bas et s’écrit donc en coordonnées cartésiennes
comme g = — g 2 ou g > 0. En projetant la loi vectorielle du mouvement (3.7) selon les axes
de coordonnées du repere cartésien, on obtient trois équations scalaires du mouvement,

selon £: =0
selon g: §=0 (3.10)
selon 2: Z= —g=cste
En intégrant les équations du mouvement (3.10) par rapport au temps, compte tenu des
conditions initiales (3.9) sur la vitesse, on obtient les équations de la vitesse,
T = Vg, = cste
Y = vgy = cste (3.11)
Z(t) = — gt + vy

En intégrant les équations de la vitesse (3.11) par rapport au temps, compte tenu des
conditions initiales (3.8) sur la position, on obtient les équations horaires,

z (t) = vou t + o
y(t) =voyt + o (3.12)

1
z(t) = —§9t2+110zt+20
Le mouvement selon les axes de coordonnées Ox et Oy est rectiligne uniforme car il n’y a
pas de force qui agit dans ces directions. Le mouvement selon 1’axe de coordonnée Oz est
rectiligne uniformément accéléré vers le bas dit au champ gravitationnel.

3.2.6 Chute libre

On considere le mouvement de chute libre d’un point matériel le long de I'axe Oz d’une
position initiale rg = h 2 ou h est la hauteur initiale avec une vitesse initiale nulle, c¢’est-a-
dire vg = 0. Au temps de chute ¢ = t. lorsque le point matériel touche le sol, c’est-a-dire
z (tc) = 0, la troisitme équation du mouvement balistique (3.12) devient,

1
—igtg—l—h:O (3.13)

Ainsi, le temps de chute libre est de la forme suivante,

2h
te=1/— 3.14
; (3.14)

Alternativement, en connaissant la hauteur de chute h et en mesurant le temps de chute ¢,
on peut déterminer expérimentalement le champ gravitationnel g.

Mesure de g


https://www.youtube.com/watch?v=yLknfcBec2M
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3.2.7 Trajectoire balistique

On considere le mouvement balistique d’un point matériel initialement a l'origine, c’est-
a-dire 79 = 0, avec une vitesse initiale contenue dans le plan vertical Oxz et orientée selon
un angle de tir « par rapport a 1’axe horizontal Oz, c¢’est-a-dire vy = vgcosa & + vgsina 2.
Ainsi, les équations du mouvement balistique (3.12) deviennent (Fig. 3.9),

x (t) =vgcosat

y()=0 (3.15)

1
z(t) = —§gt2 +vpsinat

En substituant la premiére équation du mouvement (3.15) dans la troisitme équation du

)

/ X

FIGURE 3.9 Le point matériel P est initialement & ’origine avec une vitesse initiale vg
dans le plan Oxz qui est orientée selon un angle de tir a par rapport a ’axe horizontal Ozx.

mouvement, on élimine explicitement le parametre temps ¢ et on obtient ’équation de la
trajectoire balistique (Fig. 3.10),

z(x) = ————2® +tanax (3.16)

iV

FIGURE 3.10 La trajectoire du mouvement balistique d’un point matériel en absence de
frottement est une parabole.

A titre d’exemple, on considére un mécanisme qui permet de lacher deux boules simul-
tanément. La premiere boule n’a pas de vitesse initiale, elle est donc en chute libre. La
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deuxieme a une vitesse initiale horizontale due a ’action d’un ressort et suit donc un mou-
vement rectiligne uniforme selon ’axe horizontal et un mouvement rectiligne uniformément
accéléré selon l'axe vertical (Fig. 3.11). Les deux boules frappent le sol en méme temps, car
elles ont sont soumises a la méme accélération verticale du champ de pesanteur.

1
—
1

|

~——

F1GURE 3.11 La boule de gauche est en chute libre alors que la boule de droite est éjectée
par un ressort horizontal.

Comme autre exemple, on considere une table a air inclinée de sorte que le bord long soit
horizontal et que le bord court soit incliné. Un puck est laché depuis le coin droit du haut
de la table. Simultanément, un puck est lancé depuis le coin gauche du bas de la table dans
la ligne de visée du premier avec une vitesse bien choisie. Les deux pucks entrent en collision
au coin droit du bas de la table (Fig. 3.12).

FIGURE 3.12 Le puck de bas est lancé sur une table a air inclinée avec une vitesse initiale
orientée vers le puck du haut laché simultanément sans vitesse initiale.

3.3 Balistique avec frottement

Les frottements subit par un objet en mouvement dans ’air ou dans d’un autre fluide
sont des frottements visqueux. Dans cette section, on considere que la vitesse relative entre
I'objet et le fluide est suffisamment basse. Par conséquent, le mouvement de ’objet a lieu en
régime d’écoulement laminaire. De maniére analogue au cas de la balistique sans frottement,
on considere que 'objet peut étre modélisé comme un point matériel. En présence de frot-
tement, on suit une démarche analogue a ’analyse balistique sans frottement. Sur le plan
mathématique, I'intégration des équations du mouvement pour obtenir les équations de la
vitesse puis les équations horaires est un peu plus compliquée. On verra que les équations
de la vitesse et les équations horaires sont caractérisées par un temps d’amortissement qui
est du a la présence d’une force de frottement visqueux.

3.3.1 Loi du mouvement balistique

Pour un mouvement balistique en présence de frottement en régime d’écoulement lami-
naire, les forces extérieures F " sont le poids de I’objet P et la force de frottement visqueux
F; donnée par la loi de Stokes. Par conséquent, la loi du mouvement balistique (2.32) s’écrit,

Y F*=P+F;=ma (3.17)


https://www.youtube.com/watch?v=wuljQiJTdTI
https://www.youtube.com/watch?v=FbRWC382rM0
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En substituant ’expression (3.5) du poids P et la loi de Stokes (3.3) dans la loi du mouve-
ment (3.17), celle-ci devient,

ma=mg— bv (3.18)
Contrairement & la loi du mouvement balistique sans frottement (3.7), la loi du mouvement

balistique avec frottement (3.18) montre que l'accélération dépend de la masse m comme
dans le cas de la chute d’une plume et d’une masse de plomb en présence de frottement.

3.3.2 Repere et conditions initiales
Comme dans le cas de la balistique sans frottement, on choisit comme repére, le repere
cartésien (&, 9, £). Initialement, le point matériel se trouve a l’origine O, c’est-a-dire 7 (0) =
0. Sa vitesse initiale se trouve dans le plan vertical Ozz, c’est-a-dire v (0) = vo, & + vo, 2.
Par conséquent, il y a trois conditions initiales sur la position (Fig. 3.9),

(i) x(0)=0 (i) y(0)=0 (7ir) 2(0)=0 (3.19)
Il y a également trois conditions initiales sur la vitesse (Fig. 3.9),

(1) @(0) = vor (i) 9(0)=0 (i) % (0) = vo. (3.20)

3.3.3 Equations du mouvement balistique

Le vecteur vitesse s’écrit en coordonnées cartésiennes v = & &+y §+2 2 = v, T+vy, 4+, 2
et le vecteur accélération sécrit @ = £ & + §Y+22 = U, & + Uy Y + v, 2. Le champ de
gravitation g est dirigé vers le bas et s’écrit donc en coordonnées cartésiennes g = — g 2 ou
g > 0. En projetant la loi vectorielle du mouvement (3.18) selon les axes de coordonnées du
repere cartésien, on obtient trois équations scalaires du mouvement,

selon £: mi=—>bx ou mi, = — bu,
selon §: mij=—by ou mo, = — b, (3.21)
selon 2: mZ=—bz— mg ou mu, = —bv, — mg

Le temps d’amortissement 7 est défini comme,
m

T= (3.22)

Cette définition est cohérente, car en absence de frottement, c’est-a-dire b = 0, le temps
d’amortissement devient infini, ¢’est-a-dire 7 — 0o. Les équations du mouvement balistique
avec frottement (3.21) peuvent étre divisées par la masse m et mises sous la forme,

. . 1
selon & : U, =——1v,
T
1
selon §: v, =——uy, (3.23)
T
- . 1
selon 2: U, =——-v,— g
T

Comme le vecteur vitesse initiale vg est contenu dans le plan vertical Ozxz, il n’a pas de
mouvement balistique selon ’axe horizontal Oy. Le mouvement balistique se décompose en
un mouvement horizontal selon I’axe Ox et un mouvement vertical selon 'axe Oz. A présent,
on va déterminer I'équation de la vitesse puis I’équation horaire du mouvement horizontal
d’abord et du mouvement vertical ensuite.

3.3.4 Mouvement balistique horizontal

La premiére équation du mouvement balistique avec frottement (3.23) peut étre mise sous
la forme,

dvg (¢) _  dt
o) =7 (3.24)
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Afin d’obtenir I’équation de la vitesse selon 'axe horizontal Oz, on intégre 1’équation
différentielle du mouvement (3.24) du temps initial 0 au temps ¢ et donc de la vitesse initiale

Vo & la vitesse v, (t),
Vg (t) 14! t
v U/z (t/) T Jo

Ox

ou les variables et fonctions apparaissant dans I’expression de 'intégrant sont notées avec
des primes pour ne pas les confondre avec les bornes d’intégration. La solution de 1’équation
intégrale (3.25) s’écrit,
Vg (T t
In (vy (t)) — In(vg) = In (w()> =—- (3.26)
Vox T

En prenant ’exponentielle de I’équation (3.26), on obtient I’équation de la vitesse (Fig. 3.13),

Ve () = vop exp (- i) (3.27)

Le temps d’amortissement 7 est une mesure quantitative de la décroissance de la vitesse

L’

FIGURE 3.13 La vitesse v (t) du mouvement horizontal décroit exponentiellement dii & la
force de frottement & partir d’une valeur initiale vo.

horizontale qui est de 63% (Fig. 3.13),

vy (7)

T = oxp(— 1) = 037 = 37% (3.28)
Oz

Comme la vitesse est la dérivée (1.2) de la position, le déplacement infinitésimal horizontal
dx (t) est donné par,

da (£) = vo, exp (— j) dt (3.29)

Afin d’obtenir I’équation horaire selon I’axe horizontal Oz, on inteégre I’équation différentielle
du déplacement (3.24) du temps initial 0 au temps ¢ et donc de la position initiale 0 & la

position x (t),
z(t) t t!
/ da' (t') = vw/ exp (— > dt’ (3.30)
0 0 T

La solution de I’équation intégrale (3.30) s’écrit,

t/
z (t) = —voz T €xp < 7_)

L’équation horaire du mouvement horizontal (3.31) peut étre mise sous la forme (Fig. 3.14),

2 (1) = vou T <1 — exp (— j)) (3.32)

Pour des temps suffisamment petits par rapport au temps d’amortissement 7, c’est-a-dire

t'=t

(3.31)

t'=0
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t < 7, on peut faire un développement limité au 1" ordre en t/7 de ’exponentielle autour
de 0,

t t
exp (— ) =1- - si tT (3.33)
T

T

Ainsi, compte tenu de ce développement limité (3.33), '’équation horaire tend initialement
vers ’asymptote oblique,

x(t) =vost si t<T (3.34)

Pour des temps suffisamment grands par rapport au temps d’amortissement 7, c’est-a-dire
t > 7, exponentielle est négligeable. Ainsi, la coordonnée horizontale de la position tend
vers une valeur maximale,

Too = lim () =vg, 7 >0 (3.35)

t—o0

ce qui signifie que I’équation horaire du mouvement horizontal tend finalement vers ’asymp-
tote horizontale,

2 (t) =V0e T = Too si t>T (3.36)

L’équation horaire du mouvement horizontal (3.37) peut alors étre écrite en termes de la

.l

FIGURE 3.14 La coordonnée horizontale de la position z (¢) tend vers une valeur maximale
Too-

valeur maximale (3.35) comme,

2 (t) = oo (1 ~ exp (— i)) (3.37)

3.3.5 Mouvement balistique vertical

Afin de résoudre I’équation du mouvement balistique vertical avec frottement (3.23), il faut
faire un changement de variable pour rendre cette équation différentielle homogéne,
c’est-a-dire que la dérivée de la fonction doit étre proportionnelle & la fonction. Pour ce faire,
cette équation est mise sous la forme suivante,

_ dv, 1

. 1
Vv, = o ——g—;vz——;(vz—kgﬂ (3.38)

Par conséquent, on identifie le changement de variable qui rend cette équation homogene,

u, (t) = v, (t) + g7 ainsi Uy = U, (3.39)
Ainsi, I’équation du mouvement balistique vertical avec frottement (3.23) s’écrit,

1 dus (t) _  dt

o1 ainsi _
Uy - Uy insi w. () -

(3.40)

Afin d’obtenir I'équation de la vitesse selon l’axe vertical Oz, on integre 1’équation
différentielle du mouvement (3.40) du temps initial 0 au temps ¢ et donc de la vitesse initiale
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u (0) = vo, + g7 a la vitesse u, (t) = v, (t) + g7,

[ Ty (3.1)
u ! B v B T 0 )

2(0) Uz (t) 0=+9T ul, (t')

La solution de 1’équation intégrale (3.41) s’écrit,

(3.42)

In (v,(t) + g7) — In (v, +¢7) =In (M) R

Vo, + 9T T

En prenant 'exponentielle de ’équation (3.42), on obtient I’équation de la vitesse (Fig. 3.15),

t
v, (t) = (vor + g7) exp (— ;) - g7 (3.43)
L’équation de la vitesse du mouvement vertical montre que la coordonnée verticale de la
vitesse tend vers une valeur minimale appelée vitesse limite,
Voo = lim v, (t) = —g7 <0 (3.44)
t—o0

L’équation de la vitesse (3.43) peut alors étre écrite en termes de la vitesse limite (3.44)
comme,

v () = (9 — va0) €Xp (- ;) +om (3.45)

v (t)

Vo2

Voo

FIGURE 3.15 La vitesse v (t) du mouvement vertical décroit exponentiellement di & la
force de frottement & partir d’une valeur initiale vo, pour tendre vers la vitesse limite voo.

Compte tenu de lexpression (3.22) du temps d’amortissement et du coefficient obtenu
par la loi de Stokes (3.3), le temps d’amortissement 7 est inversement proportionnel & la

viscosité du fluide n,
m m
T=— = — = cste 3.46
b~ (3.46)
Par conséquent, plus le liquide est visqueux plus le temps d’amortissement est court. Une
bille en chute libre dans de I’huile est plus rapidement amortie que dans de I’eau. Compte tenu
du temps d’amortissement (3.46), la vitesse limite (3.44) est inversement proportionnelle a

la viscosité du fluide n,

Voo = —gT = — — (3.47)

Par conséquent, plus le liquide est visqueux plus la norme de la vitesse limite est faible. La
norme de la vitesse limite d’une bille en chute libre dans de I’huile est plus faible que dans
de l'eau.

La norme de la vitesse limite de chute libre de I’homme dans 'atmosphere est d’environ
200 km h ™" alors que le faucon pelerin atteint une vitesse limite dont la norme est 300 kmh™*.
A cette vitesse, I’écoulement de ’air a lieu en régime turbulent et le coefficient de trainée
C, du faucon est bien meilleur que celui de 'homme.

Vitesse limite
(eau, glycérine, huile)

Faucon pelerin


https://www.youtube.com/watch?v=8OR-iBmD2b4
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Comme la vitesse est la dérivée (1.2) de la position, le déplacement infinitésimal vertical
dz (t) est donné par,

dz (t) = (Vo — Vo) €XD (— t) dt + veo dt (3.48)

T

Afin d’obtenir I’équation horaire selon 'axe vertical Oz, on integre I’équation différentielle
du déplacement (3.48) du temps initial 0 au temps ¢ et donc de la position initiale 0 & la

z(t) t ' t
/ dz' (t') = (vo, — voo)/ exp (— ) dt’ + voo/ dt' (3.49)
0 0 T 0

La solution de 1’équation intégrale (3.49) s’écrit,

position z (t),

t'=t t'=t
+ Vo t

t'=0

(3.50)

20 =~ (0.~ )7 o (- £

T

t'=0

L’équation horaire du mouvement vertical (3.50) peut étre mise sous la forme (Fig. 3.16),

2(8) = (000 — Vo) T (1 ~exp < j)) bt (3.51)

Pour des temps suffisamment grands par rapport au temps d’amortissement 7, c’est-a-dire

FIGURE 3.16 La coordonnée verticale de la position z (t) augmente, atteint un maximum,
puis diminue. Elle tend & diminuer linéairement lorsque la vitesse de chute est suffisamment
proche de la vitesse limite.

t > 7, I'exponentielle est négligeable. Ainsi, la coordonnée verticale de la position tend
finalement vers I’asymptote oblique,

Z2(t) =voot + (Vo: — Voo) T  si t>T (3.52)

3.3.6 Trajectoire balistique

En inversant 1’équation horaire du mouvement horizontal (3.37), on tire le temps,

t(x)=—7n (1 - x) (3.53)

Loo

En substituant le temps (3.53) dans I’équation horaire du mouvement vertical (3.51) et on
obtient 1’équation de la trajectoire balistique (Fig. 3.17) qui est indépendante du temps,

2 (@) = (V0s — Voo) T —— — vse 7 In <1 - ‘”) (3.54)

Loo Loo

La force de frottement visqueux F'y empéche I'objet d’aller au-dela de ’asymptote verticale,

T = Too (3.55)
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A

FIGURE 3.17 La trajectoire du mouvement balistique d’un point matériel en présence de
frottement a une asymptote verticale en r = T.
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