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Frottements et balistique

3.1 Forces de frottement

Comme les frottements sont omniprésents dans les phénomènes physiques, ils ont été

considérés jusqu’au XVIIe siècle comme des propriétés fondamentales et non comme des

interactions. Aristote considérait que le mouvement d’un objet soumis au frottement de l’air

était son mouvement naturel. Galilée a réalisé que le mouvement naturel d’un corps est un

mouvement rectiligne uniforme en absence de force de frottement. Cela a remis en cause le

paradigme aristotélicien qui a été remplacé par le paradigme newtonien.

Les frottements, aussi appelé friction, sont dus à une interaction entre deux systèmes

qui s’oppose à leur mouvement relatif. Les frottements sont caractérisés par des forces

phénoménologiques, c’est-à-dire qu’elles sont tirées de l’expérience. La branche de la

mécanique qui étudie les frottements est la tribologie. Les frottements sont le résultat

de différents types d’interactions qui ont lieu principalement à l’échelle microscopique. Il

existe des frottements de deux types différents : des frottements secs qui ont lieu à l’in-

terface entre des solides ou des frottements visqueux d’un solide immergé dans un fluide

− c’est-à-dire un liquide ou un gaz.

3.1.1 Frottements secs

Charles Augustin de

Coulomb

A la fin du XVIIIe siècle, Charles Augustin de Coulomb a étudié l’action d’une surface sur

un solide. Il a montré qu’il fallait distinguer deux types de frottements secs. Les frottements

qui empêchent le glissement de la surface de contact d’un solide par rapport à un autre

ont été appelés frottements statiques. Les frottements qui s’opposent au glissement de

la surface de contact d’un solide par rapport à un autre et ralentissent ce mouvement ont

été appelés frottements cinétiques. Au début du XVIe siècle, Léonard de Vinci étudie

Figure 3.1 Une plaque de bois glisse sur une surface lisse et sèche. Des poids sont posés
sur la plaque de bois. On mesure la force appliquée sans glissement, puis la force appliquée
lors du glissement.

les frottements secs et en conclut que la force de frottement est proportionnelle à la force

exercée par la surface du dessous sur la surface du dessus et qu’elle est indépendante de

l’aire de la surface de contact. Deux siècles plus tard, Guillaume Amontons montre qu’elle

est indépendante de la norme de la vitesse de mouvement relatif d’un solide par rapport à

l’autre.

Léonard de Vinci

https://en.wikipedia.org/wiki/Charles-Augustin_de_Coulomb
https://www.youtube.com/watch?v=4kY-v6mq8lA
https://fr.wikipedia.org/wiki/Leonardo_da_Vinci
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Frottements statiques

On considère un solide immobile posé sur une surface (Fig. 3.1). Il subit une force de

réaction normale N qui compense son poids P . On exerce une force de traction T tangente

à la surface sans que le solide glisse. Le solide subit alors une force de frottement statique

Ff pour compenser la force de traction T . Elle s’ajuste pour qu’il n’y ait pas de glissement

(Fig. 3.2). Lorsque la force de frottement statique Ff atteint une valeur maximale, il y a

N

T
Ff

Figure 3.2 La force de frottement statique Ff s’ajuste pour compenser la force de traction
T .

décrochement et glissement. L’expression de la norme ‖Ff‖ de la force de frottement statique

est donnée par une inéquation établie par de Coulomb,

‖Ff‖ 6 µs ‖N‖ (3.1)

où ‖N‖ est la norme de la réaction normale N exercée par la surface sur le solide et µs est

un nombre positif sans dimension physique appelé le coefficient de frottement statique.

La valeur de ce coefficient dépend notamment des matériaux en contact, de leur état de

surface et de l’humidité.

Frottements cinétiques

Lorsque le solide se met en mouvement il subit alors une force de frottement cinétique Ff
qui s’oppose à la force de traction T (Fig. 3.3). L’expression de la norme ‖Ff‖ de la force

T

N

Ff
v

Figure 3.3 La force de frottement cinétique Ff s’oppose au mouvement dû à la force de
traction T .

de frottement cinétique est donnée par une équation établie par de Coulomb,

Ff = −µc ‖N‖ v̂ (3.2)

où v̂ = v/‖v‖ est le vecteur unitaire sans dimension physique qui est colinéaire au vecteur

vitesse et µc est un nombre positif sans dimension physique appelé le coefficient de frot-

tement cinétique. Dans ce modèle, on considère que le coefficient µc est indépendant de

la vitesse.

On constate expérimentalement que le coefficient de frottement cinétique entre deux so-

lides est plus petit que le coefficient de frottement statique, c’est-à-dire µc < µs (Tab. 3.1).

On en fait l’expérience lorsqu’on fait glisser un meuble lourd sur un sol lisse. Avant le

décrochement, en régime statique, la norme de la force de frottement ‖F f‖ est une fonction

linéaire croissante de la norme de la force de traction ‖T ‖. Lorsqu’elle atteint la valeur

maximale µs ‖N‖, il y a décrochement. Puis la norme de la force de frottement ‖F f‖
chute brutalement en régime cinétique pour atteindre la valeur constante µc ‖N‖ qui est

indépendante de la norme de la force de traction ‖T ‖ (Fig. 3.4).

3.1.2 Frottements visqueux

Une force de frottement visqueux s’exerce sur un objet qui se déplace dans un fluide. Elle

dépend de la vitesse relative v de l’objet par rapport au fluide. Il convient de distinguer

https://www.youtube.com/watch?v=eucVByJ23zU&feature=youtu.be&list=PLZ_AWBOS3UDzuhJyYKTu7YlxIoSob5Y4D
https://www.youtube.com/watch?v=F0AV1qyc9Ow&feature=youtu.be&list=PLZ_AWBOS3UDzuhJyYKTu7YlxIoSob5Y4D
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Figure 3.4 Comportement de la norme de la force de frottement ‖F f‖ en fonction de la
norme de la force de traction ‖T ‖ en régime statique puis cinétique.

Table 3.1 Coefficients de frottement sec

Matériaux Statique µs Cinétique µc

Caoutchouc/Asphalte 1.0 0.8

Acier/Acier 0.74 0.57

Aluminium/Acier 0.61 0.47

Cuivre/Acier 0.53 0.36

Glace/Glace 0.1 0.03

Téflon/Téflon 0.04 0.03

Articulation humaine 0.01 0.003

deux types de régimes. Le premier est le régime d’écoulement laminaire qui correspond

à une vitesse relative suffisamment basse. Le second est le régime d’écoulement turbulent

qui correspond à une vitesse relative suffisamment élevée, mais inférieure à la vitesse du son.

Loi de Stokes

En régime d’écoulement laminaire, la force de frottement est proportionnelle à la vitesse

relative v et satisfait la loi de Stokes,

Ff = − k η v = − bv (3.3)

où k est un facteur géométrique et η est la viscosité du fluide. Dans le cas d’une sphère,

le facteur géométrique k = 6πR où R est le rayon de la sphère. La viscosité η qui dépend

George Gabriel Stokes
notamment de la température représente une résistance à l’écoulement (Tab. 3.2). L’unité

de la viscosité dans le système international d’unités est noté [ N s m−2 ].

Ff

Ecoulement laminaire

Trâınée

En régime d’écoulement turbulent, la force de frottement est la trâınée qui est propor-

tionnelle au carré de la norme de la vitesse relative v2,

Ff = − 1

2
CxAρv

2 v̂ (3.4)

où Cx est le coefficient de trâınée qui n’a pas de dimension physique, A est l’aire de la

projection de l’objet sur le plan orthogonal au vecteur vitesse et ρ est la densité du fluide

Table 3.2 Viscosité à 25◦C
Substances Viscosité η [ N s m−2 ]

Air 0.00002

Eau 0.0009

Sang 0.004

Huile 0.2

Miel 10

Ketchup 100

Verre 1000

https://fr.wikipedia.org/wiki/George_Gabriel_Stokes
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− c’est-à-dire le rapport de sa masse et de son volume. Le coefficient de trâınée est un

coefficient qui est entièrement déterminé par la géométrie de l’objet (Fig. 3.5).

Ff

Ecoulement turbulent

Cx = 1.1 Cx = 0.34

Cx = 1.4 Cx = 0.05

Cx = 0.45 Cx = 0.1-0.2

Figure 3.5 Le coefficient de trâınée est déterminé par la forme géométrique de l’objet.

L’histoire de l’automobile illustre l’évolution du coefficient de trâınée Cx. Au début du

XXe siècle, les voitures avaient un coefficient de trâınée Cx = 0.7 − 1.0. Aujourd’hui, les

voitures les plus aérodynamiques ont un coefficient de trâınée Cx = 0.2− 0.3 (Fig. 3.6). Le

coefficient de trâınée a donc pu être réduit d’un facteur trois en un siècle grâce au progrès

de l’aérodynamique − la branche de la mécanique qui étudie l’écoulement de l’air.

Figure 3.6 Evolution du coefficient de trâınée Cx des voitures du XXe au XXIe siècle.

3.2 Balistique sans frottement

Après avoir posé les bases de la mécanique newtonienne et introduit différents modèles

pour les frottements, on va à présent examiner une application pratique de ces lois : la

balistique. La balistique est l’étude des trajectoires d’objets, qui peuvent être assimilés à

des points matériels, lorsqu’ils sont soumis à l’attraction terrestre à la surface de la terre.

La balistique cherche donc à déterminer l’équation horaire d’un point matériel soumis à la

force de pesanteur due à son propre poids. Lorsqu’on parle de balistique, on pense tout de

suite au lancer d’une balle ou à la trajectoire d’un obus.

Si une craie est lancée avec une vitesse initiale quelconque dans un plan vertical, sa tra-

jectoire est parabolique alors que si elle est lancée verticalement sa trajectoire est rectiligne.

Pour comprendre ceci, on doit établir les équations horaires de la balistique. Dans un premier

temps, on considère les cas simples où le frottement peut être négligé.
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3.2.1 Démarche de résolution

Lorsqu’on désire résoudre un problème de dynamique, il est utile d’utiliser une démarche

systématique. En utilisant une telle approche, on structure l’esprit et on adopte une

méthodologie connue en terrain inconnu. Cette approche systématique est donc en quelque

sorte une approche tout-terrain. Cette approche n’est pas toujours nécessairement la

meilleure, mais elle est très certainement la plus polyvalente. Dans le cas particulier de

la balistique sans frottement, la marche à suivre est la suivante :

• On choisit un référentiel et un repère adapté − ou un système de coordonnées. Dans

le cas du mouvement balistique, il n’a pas de symétrie particulière. On choisit donc un

repère cartésien.

• On identifie les forces extérieures agissant sur le point matériel. Dans le cas d’un

mouvement balistique sans frottement, la seule force agissant sur le point matériel est

la force de pesanteur due à l’attraction gravitationnelle.

• On définit les conditions initiales sur la position et la vitesse du mouvement balistique

spécifique qu’on désire décrire.

• On énonce la loi vectorielle du mouvement − c’est-à-dire la 2e loi de Newton − dans

le cas du mouvement balistique.

• On projète la loi vectorielle du mouvement sur les axes de coordonnées. On obtient trois

équations du mouvement. Ces équations sont des équations différentielles exprimées

en termes des dérivées des composantes de la position par rapport au temps.

• Pour obtenir les équations horaires du point matériel, on intègre les équations du

mouvement par rapport au temps. En combinant les équations horaires, on obtient

l’équation de la trajectoire de l’objet.

3.2.2 Poids

Pour faire de la balistique, il faut commencer par définir la force de pesanteur exercée sur

un objet à la surface de la terre par l’attraction gravitationnelle. La force de pesanteur d’un

objet, c’est simplement son poids. Un objet en chute libre subit une accélération dirigée vers

le bas qui due à la force de pesanteur. Il existe donc un champ vectoriel de gravitation

qu’on dénote g. On utilise le terme champ, parce que la force de pesanteur agit partout,

c’est-à-dire en tout point. Ce champ varie lorsqu’on s’éloigne ou se rapproche du centre de

la terre. Il varie aussi avec la latitude à cause des effets liés à la rotation de la terre et

à cause du fait que la terre n’est pas une sphère parfaite, mais a une forme d’ellipsöıde.

Seulement, à l’échelle de distances qu’on considère lorsqu’on lance une balle ou qu’on tire

un obus, ces effets sont négligeables et on peut considérer que le champ de pesanteur est à

peu près constant et dirigé vers le centre de la terre.

g

Poids
La force de pesanteur ou le poids d’un objet est défini comme le produit de la masse

m de l’objet et du champ gravitational g en accord avec la 2e loi de Newton (2.32),

P = m g (3.5)

Le poids P est considéré comme une force extérieure F ext puisque la cause de cette force est

le champ de pesanteur qui est extérieur à l’objet. Pour trouver des solutions quantitatives

aux problèmes de balistique, il faut pouvoir disposer d’une valeur numérique de ce champ

de pesanteur. La valeur expérimentale de la norme du champ gravitationnel g évaluée à une

latitude de 45◦ à l’altitude h = 0 m du niveau de la mer est g = 9.81 m s−2.

3.2.3 Loi du mouvement balistique

Après avoir établit l’expression (2.32) de la 2e loi de Newton et obtenu l’expression (3.5)

de la force de pesanteur, on est à présent en mesure d’établir la loi dynamique du mouvement

balistique. La seule force extérieure F ext est le poids de l’objet P . Par conséquent, la loi du
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mouvement balistique (2.32) s’écrit,

F ext = P = ma (3.6)

En substituant l’expression (3.5) du poids dans l’équation du mouvement et en la divisant

par la masse m de l’objet, on obtient,

a = g (3.7)

Ainsi, l’accélération de l’objet est constante et indépendante de sa masse m. Si on laisse

tomber en chute libre une goutte d’eau et une bille d’acier de même volume, leur accélération

est la même. Evidemment ces deux objets ont une masse différente, mais leur accélération est

la même. On observe cela en absence de frottement ou si les frottements sont négligeables.

Galilée a prédit et Torricelli a observé que dans le vide une plume et un cube de plomb ont

la même accélération (Fig. 3.7).

Accélération constante

Figure 3.7 Dans le vide, en absence de frottement, la plume et le cube de plomb ont la
même accélération.

Evangelista Torricelli

Plume et plomb

3.2.4 Repère et conditions initiales

Etant donné que le mouvement balistique en absence de frottement n’a pas de symétrie

particulière, on choisit comme repère, le repère cartésien (x̂, ŷ, ẑ). La loi du mouvement ba-

listique (3.7) décrit toutes sortes de mouvements possibles. Pour déterminer un mouvement

balistique spécifique, on doit spécifier les coordonnées cartésiennes de la position et de la

vitesse à un instant donné. Pour simplifier, on donne, en général, la position et la vitesse à

l’instant initial t = 0. Pour cette raison, on parle de conditions initiales.

y

P

O

x

z

r0 v0

Figure 3.8 Le point matériel P a une position initiale r0 et une vitesse initiale v0 quel-
conques.

Le vecteur position initiale r (0) = r0 s’écrit en composantes cartésiennes comme x (0) x̂+

y (0) ŷ + z (0) ẑ = x0 x̂ + y0 ŷ + z0 ẑ. Par conséquent, il y a trois conditions initiales sur la

https://www.youtube.com/watch?v=EevMOYosNsU
https://www.youtube.com/watch?v=fz7ulPC7Kwo
https://fr.wikipedia.org/wiki/Evangelista_Torricelli
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position (Fig. 3.8),

(i) x (0) = x0 (ii) y (0) = y0 (iii) z (0) = z0 (3.8)

Le vecteur vitesse initiale v (0) = v0 s’écrit en composantes cartésiennes comme ẋ (0) x̂ +

ẏ (0) ŷ + ż (0) ẑ = v0x x̂+ v0y ŷ + v0z ẑ. Par conséquent, il y a trois conditions initiales sur

la vitesse (Fig. 3.8),

(i) ẋ (0) = v0x (ii) ẏ (0) = v0y (iii) ż (0) = v0z (3.9)

3.2.5 Equations du mouvement balistique

Le vecteur accélération s’écrit en coordonnées cartésiennes comme a = ẍ x̂ + ÿ ŷ + z̈ ẑ.

Le champ de gravitation g est dirigé vers le bas et s’écrit donc en coordonnées cartésiennes

comme g = − g ẑ où g > 0. En projetant la loi vectorielle du mouvement (3.7) selon les axes

de coordonnées du repère cartésien, on obtient trois équations scalaires du mouvement,

selon x̂ : ẍ = 0

selon ŷ : ÿ = 0

selon ẑ : z̈ = − g = cste

(3.10)

En intégrant les équations du mouvement (3.10) par rapport au temps, compte tenu des

conditions initiales (3.9) sur la vitesse, on obtient les équations de la vitesse,

ẋ = v0x = cste

ẏ = v0y = cste

ż (t) = − gt+ v0z

(3.11)

En intégrant les équations de la vitesse (3.11) par rapport au temps, compte tenu des

conditions initiales (3.8) sur la position, on obtient les équations horaires,

x (t) = v0x t+ x0

y (t) = v0y t+ y0

z (t) = − 1

2
gt2 + v0z t+ z0

(3.12)

Le mouvement selon les axes de coordonnées Ox et Oy est rectiligne uniforme car il n’y a

pas de force qui agit dans ces directions. Le mouvement selon l’axe de coordonnée Oz est

rectiligne uniformément accéléré vers le bas dû au champ gravitationnel.

3.2.6 Chute libre

On considère le mouvement de chute libre d’un point matériel le long de l’axe Oz d’une

position initiale r0 = h ẑ où h est la hauteur initiale avec une vitesse initiale nulle, c’est-à-

dire v0 = 0. Au temps de chute t = tc lorsque le point matériel touche le sol, c’est-à-dire

z (tc) = 0, la troisième équation du mouvement balistique (3.12) devient,

− 1

2
gt2c + h = 0 (3.13)

Ainsi, le temps de chute libre est de la forme suivante,

tc =

√
2h

g
(3.14)

Alternativement, en connaissant la hauteur de chute h et en mesurant le temps de chute tc
on peut déterminer expérimentalement le champ gravitationnel g.

Mesure de g

https://www.youtube.com/watch?v=yLknfcBec2M
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3.2.7 Trajectoire balistique

On considère le mouvement balistique d’un point matériel initialement à l’origine, c’est-

à-dire r0 = 0, avec une vitesse initiale contenue dans le plan vertical Oxz et orientée selon

un angle de tir α par rapport à l’axe horizontal Ox, c’est-à-dire v0 = v0 cosα x̂+ v0 sinα ẑ.

Ainsi, les équations du mouvement balistique (3.12) deviennent (Fig. 3.9),

x (t) = v0 cosα t

y (t) = 0

z (t) = − 1

2
gt2 + v0 sinα t

(3.15)

En substituant la première équation du mouvement (3.15) dans la troisième équation du

z

y

x

P

a

v0

Figure 3.9 Le point matériel P est initialement à l’origine avec une vitesse initiale v0

dans le plan Oxz qui est orientée selon un angle de tir α par rapport à l’axe horizontal Ox.

mouvement, on élimine explicitement le paramètre temps t et on obtient l’équation de la

trajectoire balistique (Fig. 3.10),

z (x) = − 1

2

g

v2
0 cos2 α

x2 + tanαx (3.16)

a

Figure 3.10 La trajectoire du mouvement balistique d’un point matériel en absence de
frottement est une parabole.

A titre d’exemple, on considère un mécanisme qui permet de lâcher deux boules simul-

tanément. La première boule n’a pas de vitesse initiale, elle est donc en chute libre. La
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deuxième a une vitesse initiale horizontale due à l’action d’un ressort et suit donc un mou-

vement rectiligne uniforme selon l’axe horizontal et un mouvement rectiligne uniformément

accéléré selon l’axe vertical (Fig. 3.11). Les deux boules frappent le sol en même temps, car

elles ont sont soumises à la même accélération verticale du champ de pesanteur.

Figure 3.11 La boule de gauche est en chute libre alors que la boule de droite est éjectée
par un ressort horizontal.

Comme autre exemple, on considère une table à air inclinée de sorte que le bord long soit

horizontal et que le bord court soit incliné. Un puck est lâché depuis le coin droit du haut

de la table. Simultanément, un puck est lancé depuis le coin gauche du bas de la table dans

la ligne de visée du premier avec une vitesse bien choisie. Les deux pucks entrent en collision

au coin droit du bas de la table (Fig. 3.12).

Figure 3.12 Le puck de bas est lancé sur une table à air inclinée avec une vitesse initiale
orientée vers le puck du haut lâché simultanément sans vitesse initiale.

3.3 Balistique avec frottement

Les frottements subit par un objet en mouvement dans l’air ou dans d’un autre fluide

sont des frottements visqueux. Dans cette section, on considère que la vitesse relative entre

l’objet et le fluide est suffisamment basse. Par conséquent, le mouvement de l’objet a lieu en

régime d’écoulement laminaire. De manière analogue au cas de la balistique sans frottement,

on considère que l’objet peut être modélisé comme un point matériel. En présence de frot-

tement, on suit une démarche analogue à l’analyse balistique sans frottement. Sur le plan

mathématique, l’intégration des équations du mouvement pour obtenir les équations de la

vitesse puis les équations horaires est un peu plus compliquée. On verra que les équations

de la vitesse et les équations horaires sont caractérisées par un temps d’amortissement qui

est dû à la présence d’une force de frottement visqueux.

3.3.1 Loi du mouvement balistique

Pour un mouvement balistique en présence de frottement en régime d’écoulement lami-

naire, les forces extérieures F ext sont le poids de l’objet P et la force de frottement visqueux

F f donnée par la loi de Stokes. Par conséquent, la loi du mouvement balistique (2.32) s’écrit,

∑
F ext = P + F f = ma (3.17)

https://www.youtube.com/watch?v=wuljQiJTdTI
https://www.youtube.com/watch?v=FbRWC382rM0
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En substituant l’expression (3.5) du poids P et la loi de Stokes (3.3) dans la loi du mouve-

ment (3.17), celle-ci devient,

ma = m g − bv (3.18)

Contrairement à la loi du mouvement balistique sans frottement (3.7), la loi du mouvement

balistique avec frottement (3.18) montre que l’accélération dépend de la masse m comme

dans le cas de la chute d’une plume et d’une masse de plomb en présence de frottement.

3.3.2 Repère et conditions initiales

Comme dans le cas de la balistique sans frottement, on choisit comme repère, le repère

cartésien (x̂, ŷ, ẑ). Initialement, le point matériel se trouve à l’origine O, c’est-à-dire r (0) =

0. Sa vitesse initiale se trouve dans le plan vertical Oxz, c’est-à-dire v (0) = v0x x̂ + v0z ẑ.

Par conséquent, il y a trois conditions initiales sur la position (Fig. 3.9),

(i) x (0) = 0 (ii) y (0) = 0 (iii) z (0) = 0 (3.19)

Il y a également trois conditions initiales sur la vitesse (Fig. 3.9),

(i) ẋ (0) = v0x (ii) ẏ (0) = 0 (iii) ż (0) = v0z (3.20)

3.3.3 Equations du mouvement balistique

Le vecteur vitesse s’écrit en coordonnées cartésiennes v = ẋ x̂+ẏ ŷ+ż ẑ = vx x̂+vy ŷ+vz ẑ

et le vecteur accélération s’écrit a = ẍ x̂ + ÿ ŷ + z̈ ẑ = v̇x x̂ + v̇y ŷ + v̇z ẑ. Le champ de

gravitation g est dirigé vers le bas et s’écrit donc en coordonnées cartésiennes g = − g ẑ où

g > 0. En projetant la loi vectorielle du mouvement (3.18) selon les axes de coordonnées du

repère cartésien, on obtient trois équations scalaires du mouvement,

selon x̂ : mẍ = − bẋ ou mv̇x = − bvx
selon ŷ : mÿ = − bẏ ou mv̇y = − bvy
selon ẑ : mz̈ = − bż − mg ou mv̇z = − bvz − mg

(3.21)

Le temps d’amortissement τ est défini comme,

τ =
m

b
(3.22)

Cette définition est cohérente, car en absence de frottement, c’est-à-dire b = 0, le temps

d’amortissement devient infini, c’est-à-dire τ →∞. Les équations du mouvement balistique

avec frottement (3.21) peuvent être divisées par la masse m et mises sous la forme,

selon x̂ : v̇x = − 1

τ
vx

selon ŷ : v̇y = − 1

τ
vy

selon ẑ : v̇z = − 1

τ
vz − g

(3.23)

Comme le vecteur vitesse initiale v0 est contenu dans le plan vertical Oxz, il n’a pas de

mouvement balistique selon l’axe horizontal Oy. Le mouvement balistique se décompose en

un mouvement horizontal selon l’axe Ox et un mouvement vertical selon l’axe Oz. A présent,

on va déterminer l’équation de la vitesse puis l’équation horaire du mouvement horizontal

d’abord et du mouvement vertical ensuite.

3.3.4 Mouvement balistique horizontal

La première équation du mouvement balistique avec frottement (3.23) peut être mise sous

la forme,

dvx (t)

vx (t)
= − dt

τ
(3.24)
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Afin d’obtenir l’équation de la vitesse selon l’axe horizontal Ox, on intègre l’équation

différentielle du mouvement (3.24) du temps initial 0 au temps t et donc de la vitesse initiale

v0x à la vitesse vx (t), ∫ vx(t)

v0x

dv′x (t′)
v′x (t′)

= − 1

τ

∫ t

0

dt′ (3.25)

où les variables et fonctions apparaissant dans l’expression de l’intégrant sont notées avec

des primes pour ne pas les confondre avec les bornes d’intégration. La solution de l’équation

intégrale (3.25) s’écrit,

ln (vx (t))− ln (v0x) = ln

(
vx (t)

v0x

)
= − t

τ
(3.26)

En prenant l’exponentielle de l’équation (3.26), on obtient l’équation de la vitesse (Fig. 3.13),

vx (t) = v0x exp

(
− t

τ

)
(3.27)

Le temps d’amortissement τ est une mesure quantitative de la décroissance de la vitesse

t
t

Figure 3.13 La vitesse v (t) du mouvement horizontal décrôıt exponentiellement dû à la
force de frottement à partir d’une valeur initiale v0x.

horizontale qui est de 63% (Fig. 3.13),

vx (τ)

v0x
= exp (− 1) = 0.37 = 37 % (3.28)

Comme la vitesse est la dérivée (1.2) de la position, le déplacement infinitésimal horizontal

dx (t) est donné par,

dx (t) = v0x exp

(
− t

τ

)
dt (3.29)

Afin d’obtenir l’équation horaire selon l’axe horizontal Ox, on intègre l’équation différentielle

du déplacement (3.24) du temps initial 0 au temps t et donc de la position initiale 0 à la

position x (t), ∫ x(t)

0

dx′ (t′) = v0x

∫ t

0

exp

(
− t′

τ

)
dt′ (3.30)

La solution de l’équation intégrale (3.30) s’écrit,

x (t) = − v0x τ exp

(
− t′

τ

) ∣∣∣∣t′=t
t′=0

(3.31)

L’équation horaire du mouvement horizontal (3.31) peut être mise sous la forme (Fig. 3.14),

x (t) = v0x τ

(
1− exp

(
− t

τ

))
(3.32)

Pour des temps suffisamment petits par rapport au temps d’amortissement τ , c’est-à-dire
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t� τ , on peut faire un développement limité au 1 er ordre en t/τ de l’exponentielle autour

de 0,

exp

(
− t

τ

)
= 1− t

τ
si t� τ (3.33)

Ainsi, compte tenu de ce développement limité (3.33), l’équation horaire tend initialement

vers l’asymptote oblique,

x (t) = v0x t si t� τ (3.34)

Pour des temps suffisamment grands par rapport au temps d’amortissement τ , c’est-à-dire

t � τ , l’exponentielle est négligeable. Ainsi, la coordonnée horizontale de la position tend

vers une valeur maximale,

x∞ = lim
t→∞

x (t) = v0x τ > 0 (3.35)

ce qui signifie que l’équation horaire du mouvement horizontal tend finalement vers l’asymp-

tote horizontale,

x (t) = v0x τ = x∞ si t� τ (3.36)

L’équation horaire du mouvement horizontal (3.37) peut alors être écrite en termes de la

 

t

Figure 3.14 La coordonnée horizontale de la position x (t) tend vers une valeur maximale
x∞.

valeur maximale (3.35) comme,

x (t) = x∞

(
1− exp

(
− t

τ

))
(3.37)

3.3.5 Mouvement balistique vertical

Afin de résoudre l’équation du mouvement balistique vertical avec frottement (3.23), il faut

faire un changement de variable pour rendre cette équation différentielle homogène,

c’est-à-dire que la dérivée de la fonction doit être proportionnelle à la fonction. Pour ce faire,

cette équation est mise sous la forme suivante,

v̇z =
dvz
dt

= − g − 1

τ
vz = − 1

τ
(vz + gτ) (3.38)

Par conséquent, on identifie le changement de variable qui rend cette équation homogène,

uz (t) = vz (t) + gτ ainsi u̇z = v̇z (3.39)

Ainsi, l’équation du mouvement balistique vertical avec frottement (3.23) s’écrit,

u̇z = − 1

τ
uz ainsi

duz (t)

uz (t)
= − dt

τ
(3.40)

Afin d’obtenir l’équation de la vitesse selon l’axe vertical Oz, on intègre l’équation

différentielle du mouvement (3.40) du temps initial 0 au temps t et donc de la vitesse initiale
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uz (0) = v0z + gτ à la vitesse uz (t) = vz (t) + gτ ,∫ uz(t)

uz(0)

du′z (t′)
u′z (t′)

=

∫ vz(t)+gτ

v0z+gτ

du′z (t′)
u′z (t′)

= − 1

τ

∫ t

0

dt′ (3.41)

La solution de l’équation intégrale (3.41) s’écrit,

ln (vz(t) + gτ)− ln (v0z + gτ) = ln

(
vz (t) + gτ

v0z + gτ

)
= − t

τ
(3.42)

En prenant l’exponentielle de l’équation (3.42), on obtient l’équation de la vitesse (Fig. 3.15),

vz (t) = (v0z + gτ) exp

(
− t

τ

)
− gτ (3.43)

L’équation de la vitesse du mouvement vertical montre que la coordonnée verticale de la

vitesse tend vers une valeur minimale appelée vitesse limite,

v∞ = lim
t→∞

vz (t) = − gτ < 0 (3.44)

L’équation de la vitesse (3.43) peut alors être écrite en termes de la vitesse limite (3.44)

comme,

vz (t) = (v0z − v∞) exp

(
− t

τ

)
+ v∞ (3.45)

t

 

t

Figure 3.15 La vitesse v (t) du mouvement vertical décrôıt exponentiellement dû à la
force de frottement à partir d’une valeur initiale v0z pour tendre vers la vitesse limite v∞.

Vitesse limite

(eau, glycérine, huile)

Compte tenu de l’expression (3.22) du temps d’amortissement et du coefficient obtenu

par la loi de Stokes (3.3), le temps d’amortissement τ est inversement proportionnel à la

viscosité du fluide η,

τ =
m

b
=
m

kη
= cste (3.46)

Par conséquent, plus le liquide est visqueux plus le temps d’amortissement est court. Une

bille en chute libre dans de l’huile est plus rapidement amortie que dans de l’eau. Compte tenu

du temps d’amortissement (3.46), la vitesse limite (3.44) est inversement proportionnelle à

la viscosité du fluide η,

v∞ = − gτ = − mg

kη
(3.47)

Par conséquent, plus le liquide est visqueux plus la norme de la vitesse limite est faible. La

norme de la vitesse limite d’une bille en chute libre dans de l’huile est plus faible que dans

de l’eau.

La norme de la vitesse limite de chute libre de l’homme dans l’atmosphère est d’environ

200 km h−1 alors que le faucon pèlerin atteint une vitesse limite dont la norme est 300 km h−1.

A cette vitesse, l’écoulement de l’air a lieu en régime turbulent et le coefficient de trâınée

Cx du faucon est bien meilleur que celui de l’homme.

Faucon pèlerin

https://www.youtube.com/watch?v=8OR-iBmD2b4
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Comme la vitesse est la dérivée (1.2) de la position, le déplacement infinitésimal vertical

dz (t) est donné par,

dz (t) = (v0z − v∞) exp

(
− t

τ

)
dt+ v∞ dt (3.48)

Afin d’obtenir l’équation horaire selon l’axe vertical Oz, on intègre l’équation différentielle

du déplacement (3.48) du temps initial 0 au temps t et donc de la position initiale 0 à la

position z (t), ∫ z(t)

0

dz′ (t′) = (v0z − v∞)

∫ t

0

exp

(
− t′

τ

)
dt′ + v∞

∫ t

0

dt′ (3.49)

La solution de l’équation intégrale (3.49) s’écrit,

z (t) = − (v0z − v∞) τ exp

(
− t′

τ

) ∣∣∣∣t′=t
t′=0

+ v∞ t′
∣∣∣∣t′=t
t′=0

(3.50)

L’équation horaire du mouvement vertical (3.50) peut être mise sous la forme (Fig. 3.16),

z (t) = (v0z − v∞) τ

(
1− exp

(
− t

τ

))
+ v∞ t (3.51)

Pour des temps suffisamment grands par rapport au temps d’amortissement τ , c’est-à-dire

t

Figure 3.16 La coordonnée verticale de la position z (t) augmente, atteint un maximum,
puis diminue. Elle tend à diminuer linéairement lorsque la vitesse de chute est suffisamment
proche de la vitesse limite.

t � τ , l’exponentielle est négligeable. Ainsi, la coordonnée verticale de la position tend

finalement vers l’asymptote oblique,

z (t) = v∞ t+ (v0z − v∞) τ si t� τ (3.52)

3.3.6 Trajectoire balistique

En inversant l’équation horaire du mouvement horizontal (3.37), on tire le temps,

t (x) = − τ ln

(
1− x

x∞

)
(3.53)

En substituant le temps (3.53) dans l’équation horaire du mouvement vertical (3.51) et on

obtient l’équation de la trajectoire balistique (Fig. 3.17) qui est indépendante du temps,

z (x) = (v0z − v∞) τ
x

x∞
− v∞ τ ln

(
1− x

x∞

)
(3.54)

La force de frottement visqueux F f empêche l’objet d’aller au-delà de l’asymptote verticale,

x = x∞ (3.55)
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x

Figure 3.17 La trajectoire du mouvement balistique d’un point matériel en présence de
frottement a une asymptote verticale en x = x∞.
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